

Automation through Structured Risk Minimization

Robert Cooley, Ph.D. VP Technical Operations Knowledge Extraction Engines (KXEN), Inc.

Personal Motivation & Background

"When the solution is simple, God is answering"

- Albert Einstein
- ♦ 1991 Navy Nuclear Reactor Design
 - Emphasis on simple but highly functional design

• The key is to automate data mining as much as possible, but not more so

- Gregory Piatetsky-Shapiro
- ♦ 1996 Data mining research
 - Emphasis on automation of knowledge discovery

"Solving a problem of interest, do not solve a more general problem as an intermediate step"

- Vladimir Vapnik
- ♦ 1997 Structured Risk Minimization (SRM)
 - Emphasis on simplicity to manage generalization
- 1998 Support Vector Machines (SVM) for Text Classification
 - Hoping for better generalization, ended up with increased automation
- When all you have is a hammer, every problem looks like a nail
 - Abraham Maslow
 - ♦ 2001 Joined KXEN
 - Automation through SRM

Learning / Generalization

Under Fit Model/High Robustness (Training Error = Test Error)

Over Fit Model/Low Robustness (No Training Error, High Test Error)

- Statistical Ability to generalize from a set of training examples
 - Are the available examples sufficient?
- Training Ability to handle a wide range of situations
 - Any number of variables, cardinality, missing values, etc.
- Deployment Ability to resist degradation under changing conditions
 - Values not seen in training
- Engineering Ability to avoid catastrophic failure
 - Return an answer without crashing under challenging conditions

If two models explain the data equally well then the simpler model is to be preferred

<u>1st discovery</u>: VC (Vapnik-Chervonenkis) dimension measures the complexity of a set of mappings.

If two models explain the data equally well then the model with the smallest VC dimension is to be preferred

<u>1st discovery:</u> VC (Vapnik-Chervonenkis) dimension measures the complexity of a set of mappings.

<u>2nd discovery</u>: The VC dimension can be linked to generalization results (results on new data).</u>

From W. of Ockham to Vapnik

If two models explain the data equally well then the model with the smallest VC dimension has better generalization performance

<u>1st discovery</u>: VC (Vapnik-Chervonenkis) dimension measures the complexity of a set of mappings.

<u>2nd discovery</u>: The VC dimension can be linked to generalization results (results on new data).</u>

<u>3rd discovery</u>: Don't just observe differences between models, control them.

From W. of Ockham to Vapnik

To build the best model try to optimize the performance on the training data set, AND minimize the VC dimension

Structured Risk Minimization (SRM)

Quality:

- How well does a model describe your existing data?
- Achieved by minimizing Error.

Reliability:

- How well will a model predict future data?
- Achieved by minimizing Confidence Interval.

Model Complexity

SRM is a Principle, NOT an Algorithm

Consistent Coder

K_{2R}O

Robust Regression Smart Segmenter

K svm

Support Vector Machine

Features of SRM

Adding Variables is Low Cost, Potentially High Benefit

- Does not cause over-fitting
- More variables can only add to the model quality
- Random variables do not harm quality or reliability
- Highly correlated variables do not harm the modeling process
- Efficient scaling with additional variables

Free of Distribution Assumptions

- Normal distributions aren't necessary
- Skewed distributions do not harm quality
- Resistant to outliers
- Independence of inputs isn't necessary

Indicates Generalization Capacity of any Model

Insufficient training examples to get a robust model

Choose between several models with similar training errors

- (Lack of) Variable Selection
- Data Preparation
- Model Selection
- Model Testing

Adding Variables is Low Cost, Potentially High Benefit

- "Kitchen Sink" philosophy for variable creation
- Don't shoe-horn several pieces of information into a single variable (e.g. RFM)
- Break events out into several different time periods
- A single analytic data set with hundreds or thousands of columns can serve as input for hundreds of different models

Event Aggregation Example

	RFM	
Customer 1	132	
Customer 2	132	

Simple Aggregation

Relative Aggregation

Month 1	Month 2	Month 3	Month 4	Month 5	Month 6
\$45	\$35	0	0	\$25	0
\$25	0	0	0	\$35	\$45

Transitions

A → out	C → B	B→A	C → out	B→C	A → B
1	1	1	0	0	0
0	0	0	1	1	1

Free of Distribution Assumptions

- Different encodings of the same information generally lead to the same predictive quality
- No need to check for co-linearities
- No need to check for random variables
- SRM can be used within the data preparation process to automate binning of values

• Nominal – Group values

- TV, Chair, VCR, Lamp, Sofa → [TV,VCR], [Chair, Sofa], [Lamp]
- Ordinal Group values, preserving order
 - 1, 2, 3, 4, 5 → [1, 2, 3], [4, 5]
- Continuous Group values into ranges
 - ◆ 1.5, 2.6, 5.2, 12.0, $13.1 \rightarrow [1.5 5.2], [12.0 13.1]$

Why Bin Variables?

Performance

- Captures non-linear behavior of continuous variables
- Minimizes impact of outliers
- Removes "noise" from large numbers of distinct values
- Explainability
 - Grouped values are easier to display and understand
- Speed
 - Predictive algorithms get faster as the number of distinct values decreases

- None Leave each distinct value as a separate input
- Standardized Group values according to preset ranges
 - ♦ Age: [10 19], [20 29], [30 39], …
 - ◆ Zip Code: [94100 94199], [94200 94299], ...
- Target Based Use advanced techniques to find the "right" bins for a given question. DEPENDS ON THE QUESTION!

No Binning

Customer Value by Age

Standardized Binning

Customer Value by Age

Target Based Binning

Customer Value by Age

Predictive Benefit of Target Based Binning

Indicates Generalization Capacity of any Model

- It is not always possible to get a robust model from a limited set of data
- Determine if a given number of training examples is sufficient
- Determine amount of model degradation over time

Traditional Modeling Methodology

• CRISP-DM

- Business Understanding
- Data Understanding
- Data Preparation
- Modeling
- Evaluation
- Deployment
- SEMMA
 - Sample
 - Explore
 - Modify
 - Model
 - Assess

SRM Modeling Methodology

- **1. Business Understanding**
- 2. Create Analytic Dataset
- 3. Modeling
- 4. Data Understanding
- 5. Deployment
- 6. Maintenance

- SRM is a general principle that can be applied to all phases of data mining
- The main benefit of applying SRM is increased automation, not increased predictive quality
- In order to take full advantage of the benefits, the overall modeling methodology must be modified

Thank You

Questions?

Contact Information:

rob.cooley@kxen.com

651-338-3880

Additional KXEN Information:

- <u>www.kxen.com</u>
- sales-us@kxen.com
- 5/25 NYC Discovery Workshop, 9am to 1pm