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Linear Regression.  

 

The Stepwises and alternatives 

    

Bad model Selection/wrong coefficient signs? 

  

 Stopping mechanisms.   
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Linear Regression.  

Y 

X 

Z 

Projection of Y 

On X, Z plane. 

Projection of Y 

On X. 

Projection of Y 

On Z. 

Y hat = a X + b Z = inner  

Product of optimal projections 

Of Y on the plane spanned by 

X and Z. 
 10/19/2012 



 Leonardo Auslender M008 Ch. 3 – Copyright 2008 Leonardo Auslender Copyright 2012 Ch. 3-4 

  Length of a Standardized Variable.  
 

Let X (n,n)   

 

Let Z = standardized (X) = { z1, z2, ,,,,,, zn}. 
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Variable Selection practice.  

 
 Mostly two approaches: 

 

 

1) Sequential Inferential: such as Stepwise Family. P-values play critical role. 

Lars breaks apart from the inferential family.  

 

 

2) Via Stopping Mechanisms, e.g., AIC, BIC. May use variable searched 

inferentially but typically searches over wider subsets.  The mechanisms are 

used both in Frequentist and Bayesian statistics. Shtatland et al (2000) apply 

BIC and AIC for a Bayesian application of  variable selection.  
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Sequential 

inferential 

Mechanisms 
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 Forward Selection (FS, Miller (2002)). 

Let Y (n,1) = X  (n,p)  (p,1)  +  ,                                     usual model, n > p. 

FS minimizes   (Y Ɗ Xi i(ƍ'XƊ Xi i  ),  searching for every ith variable 

individually 

where i = XiƍX / XiƍWi   (OLS estimate, and expanding and replacing in previous 

expression) Č 

variable selected maximizes (XiƍX)
2 / XiƍWi,  

which when divided ax XƍX adbnldr 'cos (Xi,Y))2 
ČChoose Xi variable with 

smallest angle with Y (most co-linear or most correlated Y,Xi pair). 

Y 

Xi i 

Xi 

Y - Xi i 

orthogonal to Xi. 

Xj 
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 Forward Selection. 

Assume X(1) was the largest absolute correlated variable. What next? 

For all other variables, calculate: 

Xj,(1) = Xj Ɗ Bj,(1) X(1),,,,,,,,,  where Bj,(1) is LS estimator of X(1) on Xj . 

Replace Y with Y - Xi Bi,,,, and Xj with Xj,(1) for all j and proceed again as in 

previous slide. Y and remaining X variables are orthogonalized to X1.  

If vars are centered, second variable chosen has absolute largest partial 

correlation with Y given X(1), etc, because the effects of X1 have 

been partialled away from both Y and from the remaining predictors.  

 

Method minimizes RSS (= ESS) at every step Č maximizes R2 at every step. 

Method stops when decrease in RSS is not significant at specified level (.5): 

(RSSk Ɗ RSSk+1) / (RSSk+1 / n Ɗ k Ɗ 2) compared to ƌE-to-dmsdqƍ value. 

Entered variable always remains in model.  
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Step Action Y X1 X2 é Xp 

1 Find most correlated X 

variable with Y, say X1. 

Y X1 X2 é Xp 

2 Regress Y, X2 and Xp on 

X1. 

3 Replace Y, X2éXp by 

corresponding residuals of 

regression with X1. 

Y - aX1 X2 ï bX1 Xp ï c X1 

4 Find most correlated 

variable of transformed Y 

with transformed Xôs, also 

called partial correlations. 

5 Repeat process until 

change in ESS is not 

significant. 

  

 

Forward Selection: Summary of steps 
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Z 

Y 

X 

Z-bX Y-aX 

After X is selected and orthogonalized 

away from Z and Y, in the next step the 

actual variables are Z Ɗ bX and Y Ɗ aX, 

where Ə`Ɛand ƏaƐare OLS coefficients. 

The first three variables (Y, X, Z) do not 

play any further roles.  
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 Pearson Correlation Coefficients, N = 303  

(zero order correlations).  

   Prob  > |r| under H0: Rho=0  

 
              NEWX          NEWZ          NEWY  

 

     NEWX       1.00000      - 0.84553      - 0.62159  
                          <.0001        <.0001  

 

NEWZ      - 0.84553       1.00000       0.49430  

            <.0001                      <.0001  

 

NEWY      - 0.62159       0.49430       1.00000  

<.0001        <.0001  

Example of variable search and correlations: Newy = f(newx, newz)  
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Forward Selection and Orthogonalization Sequence. 

 
 

(New)X is chosen first (after intercept) because of highest 

absolute correlation with Y (-0.62). Since correlations of X with Y 

and Z are negative, final coefficients “could” but do not need to 

be negative numbers.  

 

 

Obtain residuals of regression of Y and Z on X. These residuals 

become ƏmdvƐ Y and Z in the second step.  Previous X, Y and Z 

are no longer relevant.  

 

REMEMBER: at every step, selected ƏwƐ is orthogonalized away 

from both Y and remaining Xs Č original correlations and original 

variables are irrelevant after the first variable is selected Č    
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Stepwise variable selection (Efroymson (1960).  

1. Select  most correlated variable with Y, say Z1,  find linear equation, and 

test for significance against F-to-entry.  

2. If no significance, stop. Else, examine partial correlations (or semi-partial, 

dependent on software) with Y of all Yƍr not in regression. 

3. Choose largest (say Z2), and regress Y on Z1 and Z2. Check for overall 

significance, R2 improvement, and obtain partial F-values for both 

variables (F-values = squared t-values).  

4. Lowest F-value is compared  to F-threshold (F-to-delete) and kept or 

rejected. Stop when no more removal or additions is possible. 

5. General form of F test: Add/delete X to model already containing Z: 

(  mod ) ( ) /  #  var

( )

( ( ) ( , )) / 1

( ( , ) / ( 1)

SSE reduced el SSE full diff s
F

MSE full

SSE Z SSE Z X
F

SSE X Z n p


 




 
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Backward variable selection. 

 

1. Start with all variables, and eliminate one at a time based on threshold of 

goodness-of-fit given by lowest (partial) F-value. Partial Eƍr indicate each 

variable contribution to overall fit. Equivalent to testing whether change 

in R2 is significant.  

 

2. Re-compute at each stage, and stop when lowest partial is higher than 

threshold F-value. 

 

Drawback. 

 

1. Once variable is removed, cannot be brought back in Č all alternative 

models with variables already removed are missing.  

2. Requires that full model be fitted first, which might be impossible with 

very large p.  
 10/19/2012 
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Stepwise and Forward variable selection. 

 

Drawbacks. 

1. Can miss on important variables that have combined effect on 

dependent variable, but may be no or small individual effect. 

 

2. Inference with many independent variables may be invalid (most likely). 

 

3. Sample variations Č different variables are selected, due to similar 

semi- or partial correlations.  

 

4. Based on idea that correlated variables contain redundant information, 

which is not necessarily true Č cannot consider enhancement effects.  

 10/19/2012 
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Comparison of 3 Stepwise methodologies. 

 

Financial data provided by Surendra on financial bankruptcy. 83 interval 

u`qh`akdr+ oqdehwdc ax ƏQƐ- Bgnrd Q73 `r cdodmcdms+ `mc qtm u`qh`akd

selection with defaults on Forward, Stepwise and Backward.  Tables 

shows number of chosen variables shared by the methods. 

 10/19/2012 

Shared just 

with 

FWD STP BCK 

Unshared 7 0 0 

FWD 3 7 

STP 3 0 

BCK 7 0 

Shared By All 44 44 44 

Total Selected 61 47 51 

For instance, 

3 were selected 

Both by FWD 

And STP but 

Not by BCK. 
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Example to explain GSFoward. 

 

Example: p = 67,000,  = 0.05, threshold. 

 

Adaptive Thresholding (step-up procedure).  

 

Reduce threshold as more significant features are found: adjust threshold 

to accommodate problems in which more predictors appear useful.  

 

Assume orthogonal predictors, for simplicity and rank p-values in 

ascending order, p1 < p2 < p3 ƕ, with associated X1, X2, X3 ƕ .  

 
ƏDmsdqƐ X1  p1 < _ / p, otherwise stop and retain null model. If X1 

entered, then test p2 < 2 _ / p, ƕ pq < (q _ / p), etc , where ƏoƐ is total 

number of predictors, and ƏpƐ number of predictors already ƌhmƍ equation 

plus predictor being tested.  

 

At each step, orthogonalize, etc. It provides method to stop far earlier than 

forward selection. 
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Var  Selection Summary  

Forward  Stepwise  GSForward  Shared  
Var  Name  

* *     
GC_APPSWITCH_RECENCY  

GC_APPSWITCH_T_10  *       
GC_APPSWITCH_T_13  *       
GC_APPSWITCH_T_15  *       
GC_APPSWITCH_T_2  * *     
GC_APPSWITCH_T_3  *       
GC_APPSWITCH_T_4  *       
GC_APPSWITCH_T_5  * *     
GC_APPSWITCH_T_7  *       
GC_APPSWITCH_T_8  * *     
GC_APPSWITCH_T_9  *       

GC_BKGSCT_APPSWITCH_PAST  
* *     

GC_BKGSCT_COLLABAPP_PAST  
* *     

GC_BKGSCT_COLLABCC_PAST  
* *     

GC_BKGSCT_COLLABTP_PAST  
* * * * 

GC_BKGSCT_COLLABVOICE_PAST  
* *     

GC_BKGSCT_DIGMEDIA_PAST  
* *     

GC_BKGSCT_INFRASOFT_PAST  
* *     

GC_BKGSCT_IPTV_PAST  
* *     

  
        

Totals  

19 12 1 1 
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Least Angle Regression (LARS) – Efron et al (2002)  

 
Less greedy Forward Selection, follows similar scheme.  

0) Standardize all variables.  

 

1) Find highest correlated predictor, Xj, obtain r = Y Ɗ Xj bj.  

 

2)  Increase bj by .0001 * (sign of corr (r, Xj) 

 

3)  Keep on increasing  bj until Corr (r, Xk+ j ƪ i( <Corr (r, Xj). Note bj 

not equal its OLS solution.  

 

4)  Increase (bj, bk) in joint LS direction, until Corr (r, Xm) tied (note: 

direction has equal angles between Xj and Xk). 

 

5)  Continue for all predictors. 

  

6)  If non-zero coefficients hit 0, remove it from set and re-compute for 

remaining predictors. 
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Least Angle Regression (LARS) – Efron et al (2002). 
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LARS – Efron et al (2002). 
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Least Angle Regression (LARS) – Efron et al (2002) 

 
  
 

Properties: 

 

1) simple modification of LARS implements Lasso. Actually, traces 

same path of Bs for different Lasso lambdas.  

 

2) another modification implements Forward stagewise. Also 

related to boosting.  

 

3) Can derive Cp-like estimate of prediction error. 

  

LARS algorithm efficient as OLS applied to full set of covariates. 

Faster than Quadratic Programming.  
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Back to Forward: Do zero order correlations give you  

Information as to which variables will appear in the final  

Model?   

Hardly.   

 

Selection path is given by partial correlations, and since path 

depends on selected variables, illusory to obtain all potential paths 

for typical large number of variables of Giga-bases.   

Indirect remark: Model and variable interpretation typically conceptualized 

from zero order correlations. But models involve partial (and semi-partial) 

relations, i.e., conditional relationships Č model interpretation is ALWAYS 

possible, it is just far more difficult when number of variables is large and variables 

are related.  

 

Semi-partial correlation: correlation between ORIGINAL Y and partialled Xs. 

Partial, semi-partial R2s and coefficients are counterparts of traditional ones. 

Semi-Partial concept vital later on.  

 10/19/2012 
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More  

Nitty Gritty 
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Path selection Example. 
 
Created data set with many variables. From subset of variables 

created continuous target with added error.  

 

 

 

Exercise is to verify how FVS performs in this case. Binary variables 

are called B1, B2 ƕ, continuous variables V1, V2ƕ, and Z1, Z2ƕ 

The Z variables are random products of the V variables.  

 

 

Used proc reg, alpha entry = %50. 

 10/19/2012 
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Absolute descending zero order correlations.  

 

VARIABLE 

Obs      NAME      CORRELATIONS 

1      V100         0.38584 

2      V90          0.37243 

3      B100         0.34471 

4      V80          0.32398 

5      B90          0.27970 

6      B80          0.27211 

7      V70          0.26498 

8      V60          0.23059 

9      B70          0.21887 

10     B60          0.20062 

   Summary of Forward Selection  

        Variable     Number     Partial      Model  

Step    Entered      Vars  In    R - Square    R- Square      C(p)     Pr > F  

  1     V100             1       0.1475      0.1475      158855      <.0001  

  2     V90              2       0.1217      0.2693      135742      <.0001  

  3     V80              3       0.1122      0.3815      114442      <.0001  

  4     V70              4       0.0911      0.4726     97146.1      <.0001  

  5     B100             5       0.0935      0.5661     79396.1      <.0001  

Note that  

Correlation order 

Different from order 

Of variable entrance.  

 10/19/2012 



 Leonardo Auslender M008 Ch. 3 – Copyright 2008 Leonardo Auslender Copyright 2012 Ch. 3-31 

Comment on previous slide:  

 
V100 is chosen first because of highest zero order absolute correlation. 

V90 is selected next not because of second highest but because it is first 

highest absolute first partial  given V100. (zero order corr (Y, V90) = .37). 

 

PARTIAL  CORRELATIONS GIVEN V100 

VARIABLE 

Obs      NAME      CORRELATIONS 

1      V90          0.40406       

2      B100        0.36873 

3      V80          0.36200 

4      B90          0.32246 

5      B80          0.29546 

6      V70          0.28865 

7      V60          0.25199 

8      B70          0.24141 

9      B60          0.21578 

10     V50          0.20668  
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Third selected variable is V80 (ranked 4th originally) and not 

B100, that enters at the 5th step instead. Again, partial corrs 

indicate why: 

 

PARTIAL CORRELATIONS GIVEN V100 AND V90 

VARIABLES 

Obs      NAME      CORRELATIONS 

1      V80          0.39744 

2      B100         0.39234 

3      B90          0.34460 

4      B80          0.31439 

5      V70          0.30237 

6      V60          0.28661 

7      B70          0.26154 

8      V50          0.23588 

9      B60          0.22113 

10     V40          0.20838 
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 Nomenclature 

 

Zero order correlations:  Original correlations. 

 

 

First order:    First partial. 

Second Order:   Second partial.  

(First-order semipartial, etc). 

 

 

Big note: Zero order correlations are always 

unconditional. All others are conditional on sequence of 

orthogonalized predictors.  

 10/19/2012 
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Adding trouble but more reality. 

Uncertainty of automatic variable selection.  

 
To show uncertainty of automatic variable selection,  created another random 

sample under same circumstances as the first one, with  different seed for 

random number generator. In this case, partial corr show clear edge of V80 

over B100, but newer samples might show reversal. Notice that V70 was 5th 

and now it is 3rd.  

 

 

PARTIAL CORRELATIONS GIVEN V100 AND V90 (2nd order) 

VARIABLE 

Obs                     NAME       CORRELATIONS 
1        V80           0.39156 

2        B100          0.35765 

3        V70           0.35608 

4        B90           0.32949 

  

 10/19/2012 
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Did FSV find the correct variables with 
alpha = .5?  

 

 

First 12 selected vars vdqd ƏsqtdƐvars+ nts ne Ə1/Ɛ sqtd ats ERU

chose total of 148? 

 

Even at alpha = .01, FSV chose 24 variables, of 

vghbg nmkx ehqrs ƍ1/ƍ vdqd ƌsqtdƍ u`qh`akdr- 

 

All stepwise methods inferentially troubled as to 

when to stop searching.  

  

 10/19/2012 
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Stepwise Family considerations.  

 

1. In all stepwise selections, obtained p-values are larger than reported 

(Rencher and Pun, 1980; Freedman, 1983), and do not have proper 

meaning. Correction very difficult problem. 

2. If true variables are deleted, model is biased (omission bias); if redundant 

variables kept, variable selection has not been attained. No insurance 

about this.  All possible regressions tends to produce Ərl`kkƐ models, 

which is impossible (at present) with large p, because there are 2 p 

possible regressions.  

3. Selection bias occurs when variable selection is not done independently 

of coefficient estimation (symptomatic of tree regression). 

4. Further, important subsets of variables may be omitted. E.g.,  if true 

relationship is given by ƌchrs`mbdƍ between X and Y, or any linear 

combination thereof, no assurance that this subset will be found. In 

general, b`mƍs find transformations / nonlinearities. 

 10/19/2012 
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Stepwise Family considerations. 

 
5. Methods are Discrete: variables either retained or discarded, and often exhibit 

high variance and cnmƍs reduce prediction error of full model (Tibshirani likes to 

say this). 

 

6.  Stepwise yields models with upwardly biased R2s. Model needs reevaluation 

in independent data.  

 

7. Severe problems with co-linearity, but debatable.  

 

8. Gives biased regression coefficients that need shrinkage (coefficients are too 

large, Tibshirani, 1996).  

 

9. Based on methods (F tests for nested models) that were intended to be used 

to test pre-specified hypotheses. 

 10/19/2012 
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Stepwise Family considerations. 

  
10. Increasing sample size does not improve selection by much (Derksen and 

Kesselman, 1992).  

 

11. Induces comfort of not thinking about problem at hand. But thinkers could 

be clueless or contradictory. Should be considered exploratory tool.  

12. Stepwise alternatives: 

1. Replacing 1, 2, 3 ƕ variables at a time. 

2. Branch and bound techniques. 

3. Sequential Subsets,  

4. Ridge Regression. 

5. Nonnegative Garrote and Lasso, LARSƕ 

6. Foster/Stine. 

7. Stepwise but starting from full model.  

 10/19/2012 
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Stepwise Family considerations. 

 

13.  Freedman (1983)  showed by simulation in the case of n/p not very large 

that stepwise methods select about 15% of noise variables when one such 

have been selected.   

 Even if all the variables are noise, a high R2 can be obtained.  If seemingly 

insignificant variables are dropped, the R2 will still remain high.  

 

 10/19/2012 
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Wrong coefficient 

Signs Č bad model or 

Bad model selection?   
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Regression issues and some misconceptions. 

 
Y-X correlation and linear regression coefficient.  

 
In Simple linear regression (single X), the beta coefficient of a standardized X is 

identical to Corr (Y, X). 

 

In Multiple linear regression, NO, unless variables are orthogonal. Sgdxƍqd not 

even necessarily close (and cnmƍs blame co-linearity and stop ranting about this, a 

lot more later).   

 

Familiar case?: Individual predictors and dependent variables are significant in 

simple regressions, insignificant in multiple regression but F-value significant (and 

similarly in logistic regression with F- replaced by LRT). Should I drop some 

variable to obtain multiple significance?  

 

NO, because it could be case of suppression or enhancement Čforward and 

stepwise selection (not backward) omit suppression or enhancement.  

 10/19/2012 



 Leonardo Auslender M008 Ch. 3 – Copyright 2008 Leonardo Auslender Copyright 2009 Ch. 3-42 

Regression issues and some misconceptions. 

 

R2 Ò r2
yx + r2

yz NOT ALWAYS TRUE. Based on 

erroneous conception that correlated variables are always redundant.   

 

 

Basis for research on enhancement (aka suppression). 

 

 

All these points are involved in issue of coefficient interpretation, variable 

importance, co-linearity, variable selection and practice of model building.   

 

E.g. (all linear functions). 

 

Y = f (x1, x2, x3) 

and x1 = g (x2, x4) => Y = f ( g (x2, x4), x2 x3) 

 
He nmkx lncdkhmf X dpt`shnm+ X ƌsqtdƍ u`qh`akd rdkdbshnm hr w1+ w2 `mc w3+ 

Ats `mx ldsgnc vhkk e`hk sn ehmc sqtd u`qh`akdr `mc sqtd ƌ1ƍ lncdkr- 
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Suppression and Enhancement very quickly.  
 

1) Why or when is the sign of a standardized coefficient opposite to sign of zero 

order correlation of predictor with dependent variable? (Suppression). 

 

 

 

 

2) Why or when does addition of correlated predictor to set of predictors cause 

R2 to be higher than sum of individual zero order correlations? 

(Enhancement). 

 10/19/2012 
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Example (Horst 1941). 

 

 Study of pilot performance (Y) from measures of mechanical & verbal abilities.  

 

When verbal ability (Z) was added to mechanical (X) ability in equation, effect of X 

increased.  

 

This occurred because Z fitted variability in X, i.e., test of mechanical ability also 

required verbal skills to read the test directions.  

 

In fact, we have a simultaneous equation system, wrongly expressed in single 

equation: 

Y = f (X, Z) 

X = g (Z) 

But, specification of simultaneous equation system is far more difficult.  
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2 2 2 2 2

0.123... 01 0(2.1) 0(3.12) 0( .123... 1)

Result doesn't depend on vars 

that is, addition of non-redundant X information.

...

for p independent vars. Note:  

sum of  correlations, semi-partial

p p p
R r r r r


    

For orthogonal vars,  zero order correlations, zero-order = semi-partials = partials.

order, prop. of fitted variance by adding

additional variable changes if order altered. 


 10/19/2012 
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2

1 2

2

    


  





/

Confusion on signs of coefficients 

and interpretation. 

( )
{

( )
} ( ) ( )yi

xy xy

xi

xy

Y X

sY Y
b r r

sX X
sg r sg b

      

  


 



 

  

. .

. 2

2

But in multivariate: ,

estimated equation (emphasizing "partial ")

Ĕ    ,

and for example:

1
( ) ( )

( ) ( ) and 1

YX Z YZ X

Y YX YZ XZ

YX Z

X XZ

YX

YX YZ XZ XZ

Y X Z

Y a b X c Z

s r r r
b

s r
sg b sg r

abs r abs r r r
 10/19/2012 
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If recall partial and semi-partial correlation Č 

. 2

.

1

*

( ) ( )

Y YX YZ XZ

YX Z

X XZ

YX Z

Y
yx

X

Y

X

s r r r
b

s r

b

s
sr

s

s
semi partial

s

sg sg semi partial





 

 

 

If all variables standardized, regression coefficient is just  semi-

partial correlation Č interpret semi-, not zero order correlation. 

Note that Z can denote more than 1 predictor. As long as semi-

partial correlations are obtained, interpretation is possible.  

 10/19/2012 



 Leonardo Auslender M008 Ch. 3 – Copyright 2008 Leonardo Auslender Copyright 2012 Ch. 3-48  10/19/2012 



 Leonardo Auslender M008 Ch. 3 – Copyright 2008 Leonardo Auslender Copyright 2012 Ch. 3-49 

Original 

Correlations. 

Survi

ved 

Sex: 

Fem. 

Ref. 

PASSCL

ASS1 

PASSCLA

SS2 

PASSCLA

SS3 

SEX

P1 

SEX

P2 

Age 

Variable 1.000 0.541 0.267 0.049 -.292 0.42

8 

0.33

8 
-.061 

SURVIVED 

SEX 1.000 0.089 0.026 -.106 0.50

1 

0.45

4 
-.055 

PASSCLASS1 1.000 -.408 -.556 0.60

1 

-.232 0.425 

PASSCLASS2 1.000 -.532 -.245 0.57

0 
-.092 

PASSCLASS3 1.000 -.335 -.303 -.310 

SEXP1 1.00

0 

-.140 0.203 

SEXP2 1.00

0 
-.075 

AGE 1.000 

Passclass1 largest abs correlation. Passclass3 2nd best.  

 10/19/2012 
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Suppression with AGE. Final FORWARD 
Model, Vars in entry order, R2 = 0.232. Coeff. 

Simple 
Corr. 

Semi 
(Y, X) Semi Sq. 

Enhancement Variable Suppressor 

16.997 0.425 0.469 0.220 Y PASSCLASS1 Cooperative 

SURVIVED Cooperative -6.861 -0.061 -0.206 0.043 

PASSCLASS2  3.154 -0.092 0.077 0.006 

SEXP2  3.398 -0.075 0.057 0.003 

 

Stepwise and Backward produced identical results as Forward. Notice that 

passclass3 was not selected when it was the second highest absolute 

correlation. 

 

Notice that the coefficient signs of passclass2 and sexp2 are the reverse of the 

corresponding signs of the simple correlations but not of the Semi-partials.  

 

The definition of cooperative suppression is due to Horst. In this case, most of 

those who survived were in first class, who were older.  
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Stopping 

Mechanisms 
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Stopping Rules, Model Selection … 
  
1) F-to-enter, F-to-leave: mentioned above, based on statistical 

inference. 

 

Counter-Argument: Present significance testing Č 

acceptance/rejection of variables and/or models is gross over-

simplification of scientific process.  

 

2)  Mallowsô Cp (Mallows (1973, 1995)) for regression models: 

 

  Cp = (RSSk / 
2

Full) + 2k Ɗ n, where 

 

  k      = subset size. RSS: regression SS. 

  2
Full = usual unbiased full model estimate of 

2
. 
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Stopping Rules, Model Selection ….   
 

3) Adjusted R2 (adjusted for degrees of freedom): 

 

Adj R2 = 1 Ɗ (1 - R2)  (n Ɗ 1) / (n Ɗ k). 

 

Maximizing Adj R2 equivalent max RSSk / (n Ɗ k), in turn 

approximately equivalent to minimizing Cp(F = 1). Adj R2 

decreases if squared t-ratio of Ə`ccdcƐ variable < 1 (Greene, 

2003).  

 

4) Akaike Information Criterion (AIC, Akaike (1973, 1977)): 

selects model that maximizes n ln (SSE / n) + 2k 

  

Burnham and Anderson (1998, p. 48) insist that k include number 

of all estimated parameters (all betas + estimated residual 

variance).  
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Stopping Rules, Model Selection …   

 
5) Bayesian Information Criterion (BIC, also called Schwarz 

Information Criterion SIC, Schwarz (1978)): selects model that 

maximizes  

 

(LL Ɗ (log n) k / 2)  (BIC) 

2LL + k log n  (SIC) 
 

Related to Bayes factor, not KL measure.  

(for regr, n ln (SSE/n) + 2(p + 2)q Ɗ 2q2, q = n 2 / SSE). When 

bnlo`qhmf lncdkr+ u`ktdr ne s`qfds u`qh`akd ltrs ad hcdmshb`k- Lncdkr cnmƍs mddc

to be nested as is case with LRT or F-test.  

 

6) CAIC: Consistent AIC (Bozdogan (1987)): AIC does not depend on 

sample size Č lack asymptotic consistency: 

CAIC = -2 LL + (log N + 1) k 
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 Discussion on stopping rules.  

 
0( AHB '`mc RHB( bnmrhrsdms vgdm sqtd lncdk hr ehwdc 'sdmcr sn ƌsqtsgƍ `r m

increases).  

 

2) AIC: consistent if dimensionality of true model increases with n. Based on 

prediction errors and thus tends to select too many covariates to enhance 

prediction. Often used as stopping rule for ARIMA models. 

 

3) Both can be used in model comparison of nested and non-nested models (unlike 

F-test or LRT) in case of logistic like models).  

  AIC BIC 

Consistency No Yes 

Prediction Better 

Extrapolation Better 

Complex Models Performs Better 

Philosophy High-Dimensional Low-Dimensional 
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 Discussion on stopping rules. 

 
4) All rules can be viewed as special cases of penalized SS. Assume known 

2  Č  general criterion is:  

 

  (RSSk / 
2 ) + F k), …….. F ‘dimensionality penalty’. 

 

AIC and min Cp are equivalent, and correspond to F = 2, and F slightly < 

2, respectively. BIC is obtained by setting F = log n.  

 
Thus, AIC selects slightly larger models than min Cp and both select larger models 

than BIC, unless n is very small Č AIC and min Cp are more likely to over-fit, 

and BIC to under-fit. AIC and Cp more successful with more complex models.  

  

5) Information criteria do not connote significance, and do not depend on 

asymptotic inference. However, AIC is equivalent to stepwise with  = 

15.7% (Lindsey, Jones (1997)) and BIC with  = 0 asymptotically 

(Terasvirta and Mellin 1986).  
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 Discussion on stopping rules. 
  

6) Without large hold-out sample, stopping rules are overwhelmed by 

selection bias.  

 

 For instance, if all predictors are useless, AIC would choose about 16% 

of the available variables for model (Mallows, 1973).   

 

 

7) Information Criteria cannot be used to select model by enumerating all of 

them (2k – 1). Instead, use stepwise with  to enter close to 1 (instead of 

.05) Č produces sequence of models, starting from  null to full one. 

Chosen models are ordered by highest increases in likelihood. As 

number of predictors rises, AIC and BIC decrease, with one minimum.  

 

8) AIC and BIC still being investigated (Shi and Tsai (1998) for instance).  
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 Comparing Forward with Cp  Selection.  
Financial data.  

Forward selects 61 predictors, Cp  54.  

Step 

Variable 

Entered Label 

Number 

Vars 

In 

Partial 

R-Square 

Model 

R-Square C(p) 

F 

Value 

Pr 

> 

F 

45 R6 R6 45 0.0000 0.9944 44.0514 2.97 0.0848 

46 R15 R15 46 0.0000 0.9944 43.4940 2.56 0.1098 

47 R16 R16 47 0.0000 0.9944 43.3242 2.17 0.1407 

48 R22 R22 48 0.0000 0.9944 43.2992 2.03 0.1547 

49 R9 R9 49 0.0000 0.9944 43.6393 1.66 0.1976 

50 R10 R10 50 0.0000 0.9944 42.9712 2.67 0.1024 

51 R21 R21 51 0.0000 0.9944 43.4621 1.51 0.2192 

52 R17 R17 52 0.0000 0.9944 43.5643 1.90 0.1683 

53 R81 R81 53 0.0000 0.9944 44.1906 1.37 0.2411 

54 R36 R36 54 0.0000 0.9944 44.9567 1.23 0.2666 

55 R78 R78 55 0.0000 0.9944 45.8462 1.11 0.2919 

56 R56 R56 56 0.0000 0.9944 46.7651 1.08 0.2984 

57 R62 R62 57 0.0000 0.9944 42.1602 6.61 0.0102 

58 R43 R43 58 0.0000 0.9944 41.4828 2.68 0.1017 

59 R58 R58 59 0.0000 0.9944 42.5734 0.91 0.3402 

60 R33 R33 60 0.0000 0.9944 43.5673 1.01 0.3158 

61 R74 R74 61 0.0000 0.9944 44.9176 0.65 0.4201 

Number 

in 

Model C(p) R-Square 

54 36.8691 0.9944 

Forward summary (step < 45 

Removed due to space). 

Min Cp selection. 

Cp took a lot more steps, 

chose 

54. But forward reached R2  

= .9944 with 24 selected  

Variables (not shown).  
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 Comparing Forward with Cp  Selection.  
Financial data. Same as previous but remove most important 

predictor. Forward selects 76 predictors, Cp  64.  

Forward summary (step < 61 

Removed due to space). 

Min Cp selection. 

Forward selected 76, of 

which Cp chose 64. But 

forward reached R2  

= .9944 with 59 selected  

Variables (not shown).  

Step 

Variable 

Entered Label 

Number 

Vars 

In 

Partial 

R-Square 

Model 

R-Square C(p) 

F 

Value 

Pr 

> 

F 

61 R9 R9 61 0.0000 0.9679 64.7294 3.96 0.0465 

62 R22 R22 62 0.0000 0.9679 63.9949 2.73 0.0982 

63 R28 R28 63 0.0000 0.9679 63.5179 2.48 0.1155 

64 R11 R11 64 0.0000 0.9679 63.2681 2.25 0.1336 

65 R72 R72 65 0.0000 0.9679 63.2068 2.06 0.1511 

66 R3 R3 66 0.0000 0.9679 63.2603 1.95 0.1630 

67 R19 R19 67 0.0000 0.9679 63.4839 1.78 0.1826 

68 R30 R30 68 0.0000 0.9679 63.7695 1.71 0.1904 

69 R74 R74 69 0.0000 0.9679 64.0695 1.70 0.1923 

70 R31 R31 70 0.0000 0.9679 64.7164 1.35 0.2447 

71 R18 R18 71 0.0000 0.9679 66.0011 0.72 0.3977 

72 R77 R77 72 0.0000 0.9679 67.2992 0.70 0.4021 

73 R2 R2 73 0.0000 0.9679 68.6210 0.68 0.4102 

74 R43 R43 74 0.0000 0.9679 69.9795 0.64 0.4232 

75 R42 R42 75 0.0000 0.9679 71.3304 0.65 0.4204 

76 R46 R46 76 0.0000 0.9679 72.8559 0.47 0.4909 

Number 

in 

Model C(p) R-Square 

64 62.9868 0.9679 
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