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Introduction

Befuddling issues in linear regression context:

- Uncorrelated predictor to dependent variable
increases significance and fit of other predictors.

-Correlated predictors enhance model fit.
-Extreme corr (x, z) does not always =» co-linearity.
-Coefficient sign is not sign of zero-order correlation of

predictor with dependent variable in multivariate
regression.
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Data Description

Data utilized in this study is financial data, denoted “Surendra” after his
creator Surendra Barsode.

The Surendra data set consists of 84 financial predictors and this study
chooses one of them as target. Nothing is known about meaning, creation,
missing value imputation. In this sense, it adapts to many circumstances of
data mining, in which we aim at testing an algorithm.
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Correlations and Redundancy.

unit-variance circles (a+b+d +e =1).

Linear model Y =a,+ a X + b Z + ¢, with usual assumptions; circles below are

»>SST
SSR(X)

A~

SSR(X/Z) =b.

1=a+b+d+e.
b +d.

SSR(X, Z)=b +d +e.
/ SSR(Z) =d+e.
But, SSR(X) + SSR(Z) > SSR(X,Z)
not always true.

2, =b+d r,=d+e R:=b+d+e
pr2,x=b/(a+b) pr2,,=el (a+e),
sr,=b sry, = e

r2: zero order corr2 = SSR(X, Z) / SST.
pr2: partial corr® = r? , .= SSR(X/Z) / [SST - SSR(Z)] .
sr?: semi-partial corr? & r?, ,, = SSR(X/Z) / SST.
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Note that Y is not standardized but instead its variance has been transformed to 1 for
pedagogical reasons. Thus, in a linear regression context, SST = 1.

Real world data is mostly observational , and most analytical studies that employ
regression techniques, such as linear or logistic regression, do not have orthogonal
predictors. It is the lack of orthogonality that is at the core of this study.




Note that in previous slide:

R2=p+d+e
2 2 2
Resré + 1y,

rl,,=b+d iz
Note that ‘d’ area cannot be obtained by way of partial or semi-
partial correlations to obtain R2,

R%= (rzyx w7 r2yz -2 Fyx Fyz Ne) (1= r2xz)

“d” =r?, -sr?, =r?, -sr? : redundancy “d” not just
defined by zero order correlations.
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Note that partial- and semi-partial correlations are always conditional on other variables. The
area “d” exists only when the predictors are not orthogonal. In turn, 99% of real world data is
of non-orthogonal predictors.

Partial- and semi-partial correlations are always conditional  ordering is important.
All variable coefficients and interpretations are CONDITIONAL on other variables present.
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Important relationships:
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There is an overall misconception that the RZ can be decomposed in terms of zero-order
correlations. This is true only in the world of orthogonal predictors. In addition, this will later
lead to misconceptions about coefficient interpretation.

The overall result above does not depend on the order the variables. Instead, the proportion
of fitted variance by adding an additional variable changes if the order is altered. For
orthogonal variables, the sum of zero order correlations is equal to the same sum of semi-
partials and the same sum of partials.
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The sum of squares of regression is similarly decomposed in terms of semi-
partial SSRs.
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correlated variables don't just contain redundant infoiona
This is NOT stage-wise regression.
SSR(Z) is SSR of regression of Y on Z.
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In multivariate setting, p > 2, not so easy to present. Context of
simultaneous or structural equations might provide better frame, especially
for interpretation.
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In the next section, 3 variables, Y, X, Z and covariance matrix must fulfill
condition of positive definiteness:

Corr?(z,x) + Corr2(z,y) + Corr 2 (x,z) — 2 Corr (x, z) Corr (x, y)
Corr (z,y) <1 (Thisis the resolution of the determinant of the correlation
matrix constrained to be positive. Some of the published papers do not
consider this constraint). It is important to realize that if this condition is not
fulfilled, the study in question is invalid, that is, pairwise correlations are not
necessarily in the [0, 1] range in a multivariate sense.
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In short: suppressor is variable that increases other variables’ coefficients
increases predictive validity (Conger, 1974, Cohen and Cohen, 1975): their
definitions are identical for the two variable case.

Thus, suppressor can induce opposite signs between  and r2;: relationship
among independent variables is suppressing or hiding real relationship with
Y, which would be larger or possibly of opposite sign.
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Corr_Yi, (i= X, Z), > 0in this case. If want < 0, mply one variable by -1.
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Fig. 3 All Effects Y = f (X, Z), varying Corr (X, 2).
Corr_yx = .8, Corr_yz = .6, Corr_yx **2 + Com_yz **2 = 1
No enhancement possible, sum sq marginal comrs = 1.
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Itis important to repeat that in the context of multiple regression, as opposed to simple linear
regression, the intuition that the signs of the coefficients must match either intuition or
theoretical results without proper consideration of the conditioning imposed by the remaining
predictors, is wrong.
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If all are variables standardized, the regression coefficiequst the semi-partia
correlation the user must interpret semi-, not zero order correlation angacan]
to theoretical claims. Note that Z can denote more than 1 predissolong as the

semi-partial correlations are calculated, interpretatiqrossible.
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A bit of confusion.

Perfect linear relationship = Linear dependence, easy to detect computationally, no need of
correlations, condition numbers, etc. Still, can be data or theoretical model problem.

Almost perfect: how imperfectis “almost perfect” to become a problem? Just rules of thumb.
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Very rare in small “p” data sets (confusion about cre
especially in non-time series settings.

More likely under data mining conditions.

ation of binary variables, etc),
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1) Close linear relationship among predicto

2) Small or null predictor variance (“dire
wobble effect”) ,

3) Unexpectedly high 2, possibly due td
model misspecification,

4) Small n. But, in data mining, n R2

Ct

A —4

1 larger VIFs.
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Ther,, extreme values are due to the condition of semi-positive definiteness on the
correlation matrix. Equation 1 can be found in Cohen et al (2003).
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Ther,, extreme values are due to the condition of positive definiteness on
the correlation matrix. Equation 1 can be found in Cohen et al (2003).

Contrary to “common sense”, the corr (x, z) goes to the extreme values, R-
sq is 1 and the coefficient variance is O.
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